
Adaptive Deep Learning based Time-Varying
Volume Compression
Yu Pan, Feiyu Zhu, Tian Gao, Hongfeng Yu

Department of Computer Science and Engineering
University of Nebraska-Lincoln, Lincoln, NE, USA

Abstract—Nowadays, floating-point temporal-spatial datasets
are routinely generated from scientific observational apparatuses
or computer simulations at an unprecedented pace. The sheer
amount of these large volumetric datasets on the order of
terabytes or petabytes consume massive resources in terms of
bandwidth, storage and computational power. On the other
hand, scientists, equipped with low-end post-analysis machines,
often find it impossible to visualize and analyze these massive
datasets with such limited resources in hand, not to mention
their ultimate goal of real time analysis and visualization. To
solve this discrepancy, a compact data representation has to
be generated and a trade-off between resource consumption
and analytical precision has to be found. There are many
existing volumetric representation generating methods, almost
all of which adopts some kind of hand-engineered heuristics to
extract the effective portion of the datasets. However, the trade-
off between resource consumption and analytical quality could
not be well established due to the introduction of hand-engineered
heuristics. In this paper, we present a deep learning based method
that can adaptively capture the inherently complicated dynamics
of temporal-spatial volumetric datasets without introducing any
hand engineered features. We train an autoencoder based neural
network with quantization and adaptation. Compared with
existing methods, our method could learn data representation at
a much lower compressed/uncompressed rate while preserving
the details of original datasets. Also, our method could adapt
with different data distribution and conduct compression and
decompression in real time. Through extensive experiments, we
show the effectiveness and efficiency of our approach over existing
methods.

Index Terms—scientific data, volume compression, deep learn-
ing, autoencoder

I. INTRODUCTION

As the advent of ubiquitous sensors and high end super-
computers, scientists nowadays can collect data from physical
environments or computer simulations at an unprecedented
pace. Usually these scientific data take the form of scalar or
vector values on temporal-spatial regular grids, which are usu-
ally named as volume data. After collecting the raw data from
experimental observations or computer simulations, scientists
are interested in exploring and analyzing those data, expecting
to gain deep insights of natural phenomena from various re-
search fields. Traditionally, when a dataset was hard to collect
and thus relatively small, domain scientists used to transfer
the dataset to their local machines for analysis. However, as
the amount of data grows exponentially, it quickly becomes
inefficient or even impossible to move data with such a big
volume. A common practice nowadays is in-situ data analysis
in which scientists use the same supercomputer generating the

raw data for initial analyses and data representation generation,
and then only important data would be transmitted to their
local analysis machines. While in-situ data analysis alleviates
the bottleneck of data transmission, it also poses new problems
such as how to generate an appropriate data representation.
There are various existing methods largely inherited from the
data compression community, which can be categorized into
lossless and lossy methods based on whether or not they pre-
serve all the information in the raw data, or can be categorized
into temporal-spatial domain methods and frequency domain
methods. The temporal-spatial domain methods can be further
categorized into distribution-based methods and image-based
methods [23]. Albeit these approaches managed to generate
data representations for different analysis and visualization use
cases, they have inherent shortcomings due to the introduction
of hand engineered heuristics.

Recent advances in deep learning architectures have pro-
vided us one more utility for data representation generation.
Due to its powerful representation learning capability, deep
learning has demonstrated success in various fields such as
image classification, object detection, computer vision, natural
language processing, and data reduction and representation [2],
[7], [13]. Recently, geometric deep learning [4] attracts many
research attempts because of its potential capability to explain
complex structures. As time-varying volumes often contain
implicit features and structures across space and time, it is
natural to apply deep learning techniques to generate volume
data representations. The success of autoencoder for image
and video compression [19] further assures the feasibility of
applying it to volume compression.

In this paper, we present a novel autoencoder based volume
compression approach as a better alternative to existing meth-
ods. Our method trains an encoder with a decoder at the same
time. The encoder extracts features from each temporal-spatial
chunk using several layers of convolutional neural network
(CNN) followed by a discrete encoding layer that conducts
quantization, and tries to spread the information evenly into
each bit. The encoding binary representation then goes through
a symmetric structure as the decoder for reconstructing the raw
volume data. The aim of this autoencoder structure is to learn
a compact data representation while preserving most of the
temporal-spatial structures of the original data. Enlightened by
distribution-based methods, we modify the classic autoencoder
structure to make it adapted to different temporal-spatial distri-
butions. Thus, the data chunk with more uniformly distributed

values will have shorter encodings whereas the data chunk
with more bumpy values will have longer encodings.

The main contributions of this paper are as follows:
• We design a new autoencoder based deep architecture to

learn a compressed representation of floating point time-
varying volume data.

• The compressed representation can not only learn data
variances with respect to spatial coordinates, but also
learn data temporal dynamics.

• We achieve lower compressed/uncompressed rate with
lower data loss, compared with previous methods.

• By using GPU based inference framework, our method
can compress raw volume data and decompress the rep-
resentation in shortest time among all existing volume
compression methods, as far as we know.

• Our method can adapt to underlying data distribution and
further reduce the compression rate.

The remainder of the paper is organized as follows. Section II
discusses the work related to our research. Section III describes
our adaptive autoencoder based architecture. We will describe
the details of our dataset and training phase in Section IV. The
evaluation results of our method are presented in Section V.
Finally, Section VI concludes the paper. The pipeline of our
model is summarized in Figure 1.

II. RELATED WORK

A. Temporal-Spatial Domain Compression
Many methods for scientific volume data compression try

to find patterns of data values with respect to the original
temporal and spatial coordinates. The basic idea is to treat
time-varying volume data as a system in which data values
change as a function of the temporal and spatial coordinates,
and try to find the spatial correlation and temporal dynam-
ics of the system. Engelson et al. [10] present one of the
pioneer work for volume data compression using predictive
coding. Burtscher and Ratanaworabhan [5], [6] choose from
two prediction based methods, the Finite Context method
(FCM) and the Differential Finite Context method (DFCM),
by comparing which one has the smallest residual. Xie and Qin
[26] propose a method for compression of seismic data using
differential predictors and context-based arithmetic coding.
Ghido [12] presents a Pulse-code Modulation (PCM) based
method for single-precision audio data, which defines a trans-
form from floating-point to integer numbers and compresses
these integers using PCM entropy coder. Fout and Ma [11]
propose a switched prediction scheme in which the better one
of two prediction based compression methods (i.e., Adaptive
Polynomial Encoder and Adaptive Combined Encoder) is
selected.

There is a subcategory of temporal-spatial domain com-
pression methods called distribution-based data representation.
This type of methods is an enhancement of the traditional
down-sampling based methods, in which the volume data is
reduced evenly in space-time and thus suffers from irregular
information loss and artifacts that are observable to end users
[17], [21], [27].

B. Frequency Domain Compression

Most methods in this category approximate the original
data as a weighted linear combination of elementary basis
temporal-spatial functions. The basis functions are either hu-
man engineered or trained for a given dataset. Rodruez et al.
[20] give a thorough survey on frequency domain compression
methods. Dunne et al. [9] apply Discrete Fourier Transform
(DFT) to compress the volume data frequency domain, approx-
imated by sine and cosine signals. Muraki et al. [18] apply
Discrete Wavelet Transform (DWT) that is another type of
frequency domain compression methods besides DFT. DWT
combines low-pass and high-pass filters for coarse and detailed
feature extraction respectively. Westermann et al. [25] show
that DWT is an idea choice for block-based multi-resolution
representations. The problem with DFT and DWT is that they
both rely on pre-defined basis functions, regardless of the
structures within the data. Thus, their representation power is
limited by the set of available basis functions. The problem of
floating-point data compression also arises in image encoding.
JPEG-2000 is the classic floating-point image compression
method [14].

C. Deep Learning based Data Representation

Developing fast in recent years, deep learning models have
proven to be very powerful for learning compact representation
of the data [2], [13], [16], [22]. Some papers have conducted
systematic analyses on the expressive power of deep learning
models [3], [8] and found that deep neural network has
a richer representational capacity than tensor approximation
(TA). Autoencoder is a type of architecture that can learn a
compact representation of the original data [13], [16], [22],
in which the first half of the architecture (encoder) learns a
function mapping from original data to a compact representa-
tion and the second half (decoder) tries to map the compact
representation back to original data. It can be proved that a
linear autoencoder is equivalent to a linear PCA, whereas an
autoencoder with non-linear activation functions is much more
powerful than PCA and thereby have more expressive power
than a linear combination of basis temporal-spatical functions.
Besides non-linearity, another advantage of autoencoder over
the existing methods is that it can learn the basis functions by
optimizing the parameters globally, while traditional methods
use hand engineered basis functions that may introduce sub-
optimum.

III. ADAPTIVE AUTOENCODER BASED ARCHITECTURE

A. Data Preprocessing

To learn an optimal representation of a time-varying volume
data, our framework treats the temporal axis and the spatial
axes equally, that is we take every time step of volume data
and combine them along the temporal axis to result in a 4D
temporal-spatial volume dataset. Then, we split the 4D dataset
into a set of chunks C of size t×x×y×z, where t, x, y, and
z are the chunk sizes along the temporal and three spatial
coordinates, respectively. In case of multi-variable volume
data, each chunk has the size t × x × y × z × k, in which

k is the number of variables in volume data. The chunk size
along each dimension is pre-defined. It is inevitable that the
data correlation outside a data chunk cannot be captured by
the model. However, this does not indicate that the larger the
data chunk is set, the better performance our model will have.
The reason is two-fold: First, a larger chunk size will reduce
the parallelism of our model. Second, since we increase the
data size within one chunk, the need for the number of the
chunks will grow exponentially to train a meaningful encoder
that could capture the much more complex data correlation.
We will compare the impact of different chunk sizes on the
performance of our model. We then flatten each chunk C
into a 1D vector v. During data preprocessing phase, we also
normalize the volume dataset w.r.t its max and min values,
and make the resulting all values between 0 and 1.

B. Autoencoder-based Model

1) Our Model: Our model has an exactly symmetric archi-
tecture that can be roughly divided into two parts: encoder
and decoder. The encoder outputs an appropriate coding for
storage, transmission or even cryptography. The decoder does
the opposite mapping, from the coding to original data. When
used together, the encoder and the decoder actually form an
identity mapping from the data to itself. In the training phase,
the encoder and the decoder are combined and trained together.
The output of the decoder will be compared with the input
of the encoder and the discrepancy will be reduced step by
step. For each volume data chunk C, after data preprocessing,
we will get a flattened 1D vector, v, containing the data in
the original 4D txyz coordinate system. The encoding and
decoding procedures could be depicted as follows:

b = Q(En(θen,v))) (1)

r = De(DeQ(b), θde) (2)

where En(·) and De(·) are the encoder and decoder, Q
donotes the quantization process, DeQ is the de-quantization
process, θen and θde are the trainable parameters of our
encoder and decoder respectively, and b is the binary rep-
resentation of the volume chunk. After training, the trained
parameters will be fixed and the encoder and decoder will be
used separately.

Both encoder and decoder are composed of several layers
of operations. We will further break down the encoder and the
decoder and introduce the components in them.

2) Feature Extraction and Code Generation: Although we
train our model in an end-to-end fashion, strictly speaking, we
cannot differentiate between the responsibilities of different
layers. However, we may still speculate the rules played by
each of those components. Thus, we can roughly decompose
our encoder into a feature extraction part and a code generation
part. Accordingly, we can decompose the decoder into a
feature recovery part and a data reconstruction part. Each part
mentioned here is composed of one or several layers of fully
connected neural network. The lower layers of encoder are
responsible for extracting various important features within the

volume chunk, and the upper layers of the encoder help form a
compact binary coding. Our decoder has the same structure as
the encode. We can then describe the encoder and the decoder
as follows:

En(x, θen) = Co(Fe(x, θfe), θco) (3)

De(x, θde) = Fr(DeC(DeQ(b), θdec), θfr) (4)

where Fe(·), Co(·),DeC(·), and Fr(·) represent feature
extraction, code generation, decoding and feature recovery
procedure, respectively. Again, this is just an approximate
decomposition that may help us denote the functionality of
different layers. Generally speaking, when it comes closer to
the middle layers, the information in the original data will be
spread more evenly across different variables or bits.

3) Structure Primitives: To build the encoder and the
decoder, we use several structures and operations primitives.
Among them are fully connected layer, rectified linear unit
(ReLU) activation.

Since, after flattened, a typical volume data chunk only
contains several hundreds or thousands voxels, instead of
using stacked convolutional layers inside each data chunk, we
decide to use stacked fully connected layers to maximize the
expressive power of our model, where a convolutional layer
can be considered as a special condition of a fully connected
layer). Suppose lth layer has a set of parameters Wl and bias
bl and for a lth input vector vl, the output of this layer will
be:

vl+1 = LReLu(Wl · vl + bl) (5)

where vl+1 is calculated by first conducting a linear transform
of vl followed by a non-linear activation function leaky
rectified linear unit LReLu(·):

LReLu(a) =

{
a if v > 0

0.01a otherwise
(6)

which, tough appearing very simple, has been proven to be
an effective way to bring in non-linearity while still keep our
model trainable. This is because the Leaky Relu can make
our encoder and decoder become non-linear transformation
and can capture more complex patterns and dynamics.

4) Code Quantization: As we are given floating point based
volume data, each value of the learned data code also occupies
at least 4 bytes of space, which would make the size of our
data representation larger than necessary. To further reduce the
compression rate, we conduct quantization to transform the
floating point based code to integer based code. In our model
setting, we only use no more than 2 bytes (i.e., 16 bits) to
represent one floating point value, and thus can further reduce
the size of our compact representation by at least half.

We also use batch normalization to adjust and scale the
output of encoding layer. Different from classic batch nor-
malization, here we use maximum and minimal values to
normalize our encoding. For encoding c = En(x, θen), we

Fig. 1: The overview of the volume data compression pipeline.

calculate the maximum and minimal values of all cs within
each batch and then shift and scale each value accordingly:

mini = 0.8 ∗mini−1 + 0.2 ∗ bmini (7)

maxi = 0.8 ∗maxi−1 + 0.2 ∗ bmaxi (8)

c = clip(c,mini,maxi) (9)

ĉ = b (c−mini)
maxi −mini

×Qnumc (10)

where c is the encoding c = En(x, θen), mini and maxi
are the accumulative minimum and maximum values after
ithbatch, and bmini and bmaxi are the minimum and max-
imum values of ithbatch. Initially, min1 = bmin1 and
max1 = bmax1. Thus, we calculate the accumulative min-
imum and maximum values across all batches. Qnum is the
quantization number that is normally equal to 2n. Here, we
clip the encoding c according to its min and max. Then, we
map c to ĉ, which is an integer and lies within [0, Qnum].
Here we empirically assign the accumulating ratios to 0.8 and
0.2. After quantization, our data code is transformed into a
binary stream, the length of which is called the coding length.
n is specified by users and determines the coding length with
an assumption that each component of ĉ has n bits.

5) Boundary Stitching: In a typical chunk based compres-
sion method, the problem with the reconstructed volume is
that there will be visible artifacts along the boundary of each
chunk. This is because we treat each voxel in a chunk equally
without considering its distance to the chunk boundary. So
there would be a discrepancy along the chunk boundaries.
Thus, we modify our model to compress the chunk vector
weighted on the distance to the chunk boundary, making a
more precise compression of boundary voxels. In this way, we
could generate a more pleasing looking reconstructed volume
in which the boundary effects will be alleviated. Equation 13
and Equation 14 in Section III-C implement the idea.

Fig. 2: Illustration of bit plane weighting.

6) Adaptive Compression: As the value distribution varies
among data chunks, intuitively speaking, one unique compres-
sion rate will introduce unnecessary space waste for those
more uniformly valued data chunks. To make our model
adaptive to different in-chunk value distributions, we further
introduce an adaptive compression mechanism. The basic
idea is to divide the whole data representation bit stream
into several parts. For each bit bi from the most significant
bit to the least significant bit (assuming there are k bits),
we exponentially adjust its weight wai = 2i, which would
penalize the use of more significant bits:

Lapt =

k∑
i=0

bi ∗ wai (11)

where Lapt is the adaptive compression loss. Figure 2 gives
an illustration. In this way, we will push the valid bits to least
significant end and thus squeeze the space consumption of our
final bit stream.

C. Learning Loss Functions

Our final loss function Ltotal is composed of two parts:
the reconstruction loss Lrecon and the adaptive compression
penalty Lapt:

Ltotal = Lrecon + αLapt (12)

where α is used to determine the relative learning weight
between two parts.

The reconstruction loss Lrecon is defined as

Lrecon = ||De(DeQ(b), θde)− v|| =
n∑
i

v2i ∗ wri (13)

where Lrecon is the weighted l2-norm of the discrepancy
between the reconstructed volume and the original volume,
and wri is the weight for each cell based on the distance
between its position coordi and the chunk center coordcenter:

wri = ||coordi, coordcenter|| (14)

for addressing boundary stitching in Section III-B5.

IV. DATASET AND TRAINING

We have tested our algorithm on two datasets, an Isabel
hurricane dataset and a combustion dataset. The Isabel hur-
ricane dataset was generated from the National Center for
Atmospheric Research (NCAR) and made available through
the IEEE Visualization 2004 Contest. It has a 500×500×100
spatial resolution and 48 time steps in total. We use the
variable QCLOUD of this dataset in our test. The data value
ranges between 0 and 0.02368. There are 48 time steps in total.
The Combustion dataset was provided by Sandia National
Laboratories. The dataset has resolutions of 350x275x270 with
a raw size of 104 MB per time step. We choose the variable
H2 from the dataset. The value ranges from 0 to 0.146. There
are 100 time steps in total.

We learn encoders and decoders using Python 3.6 and
Tensorflow 1.2 [1] on a single machine that has a 4-core
Intel Core i7-6700K CPU, an NVIDIA GeForce GTX 980 Ti
GPU, and 16GB DDR4 memory. For each dataset, we choose
a different chunk to evaluate our method. Then, we combine
several chunks into one batch, and utilize stochastic gradient
descent (SGD) to train our model batch by batch. We optimize
our model using the Adam optimizer [15] with a learning rate
γ of 0.0005 for 50-100 iterations until the model converges.
For each dataset, after we split it into a number of chunks, we
randomly select 80% chunks for training, and the remaining
for validation.

V. EVALUATION

A. Reconstruction Quality

We train our model for both datasets under different con-
figurations. We select two data chunk sizes. For each chunk
size, we select different coding length, and thereby different
compression rate. We plot the Peak Signal to Noise Ratio
(PSNR) and Root Mean Square Error (RMSE) as the function
of compression rate for both datasets. Figure 3 shows our
results.

(a) Isabel 5×5×5×5 (b) Isabel 5×10×10×10

(c) Combustion 5×5×5×5 (d) Combustion 5×10×10×10

Fig. 3: Reconstruction performance with different compression
rates. The first row is for the Isabel dataset with the chunk sizes
(a) 5×5×5×5 and (b) 5×10×10×10. The second row is for
the combustion dataset with the chunk sizes (c) 5×5×5×5
and (d) 5×10×10×10.

(a) Isabel (b) Combustion

Fig. 4: Reconstruction performance with different chunk sizes
for (a) the Isabel dataset and (b) the combustion dataset.
The values of horizontal axis indicate the dimensions of the
flattened chunk. For example, for 5×5×5×5, the chunk size
is 625.

We can clearly see that as the compression rate increases,
generally the RMSE decreases and the PSNR increases. Sur-
prisingly, for the Isabel dataset with the chunk size 5×5×5×5,
the PSNR and the RMSE of compression rate around 1% is
comparable to those much larger compression rates. When
the compression rate drops slightly less than 1%, the PSNR
(RMSE) would increase (drop) drastically. This means that our
model can capture the patterns and dynamics of volume data
as early as 1%. For the combustion dataset, the reconstruction
accuracy increases as the compression rate increases, which
also agrees with our intuition.

(a) Isabel (b) Combustion

Fig. 5: Compression and decompression time as a function
of different chunk sizes for (a) the Isabel dataset and (b) the
combustion dataset. The values of horizontal axis indicate the
dimensions of the flattened chunk. For example, for 5 × 5 ×
5 × 5, the chunk size is 625. The vertical axes indicate the
compression and decompression times (in seconds).

In addition, we compare our results with the existing ap-
proaches [24] and [23] in Table I and Table II, respectively.
As shown in Table I, our method can achieve higher PSNR
values for both datasets with a much lower compression rate.
As shown in Table II, compared with the distribution method
[23], we achieve 9-30× less RMSE when using the same
compression rate. This indicates that our method significantly
outperforms the existing distribution based methods. By lever-
aging learning-based techniques, our method can gain more
optimal coding results than conventional statistical techniques.

B. Impact of Chunk Size

As shown in Figure 3, the different chunk sizes lead to
different compression performance in terms of PSNR and
RMSE values. To understand the impact of chunk size, we
train our model for different chunk sizes. Here, we keep the
compression rate constant (all are 1%), then run our model,
and plot the reconstruction performance as a function of
chunk size. Figure 4 shows our results for both datasets. We
can see that, in general, the reconstruct performance PSNR
decreases as the chunk size increases for both datasets, which
matches our expectation. The reason is mostly that, as the
chunk grows larger, the inherent complexity will increase more
than linearly. Thus, the model will have more difficulties
to learn an optimal representation for a larger chunk size,
even though we keep the compression rate the same. Another
interesting observation is that the reconstruction performance
PSNR reaches its maximum when the chunk size is around
625 (5× 5× 5× 5) for both datasets, which indicates this is
an appropriate size (i.e, not too large for our model to capture
the patterns, nor too small for out model to ignore some of the
patterns). Meanwhile, the RMSE values reach the minimum
values round 625 for both datasets.

C. Time Efficiency

We also evaluate the compression and decompression time
efficiency of our model. Figure 5 shows the time as a function
of chunk size. For all chunk sizes, we keep the coding length

(a) 5×10×10×10 with 2000 bits
coding length

(b) 5×10×10×10 with 4000
bits coding length

(c) 5×5×5×5 with 400 bits cod-
ing length

(d) 5×5×5×5 with 960 bits
coding length

Fig. 6: Isabel: training PSNR and RMSE for each iteration
with different combinations of chuck sizes and coding lengths.

the same. We can see that the general trends for both datasets
are the same: the compression and decompression times de-
crease as the chunk size increases. This trend is especially
obvious when the chunk size is relatively small. It implies that
the decrease of in-chunk computation cannot compensate the
increase of chunk number. We can see that, for one timestep
of both datasets with the chuck size 5 × 5 × 5 × 5, the
compression time is approximately 0.225 - 0.25 seconds, and
the decompression time is approximately 0.2- 0.25 seconds,
leading to an interactive or nearly interactive rate. As far as we
know, we achieve the shortest compression and decompression
time for all volume compression methods, because we use a
relatively simple parallelizable model.

D. Convergence Analysis

Figure 6 and Figure 7 show the converging curve for
different combinations of chunk sizes and coding lengths with
the Isabel and combustion datasets, respectively. We train our
model for 100 iterations. We can see that as the iteration
number increases, the PSNR (RMSE) values gradually in-
crease (decrease). Generally speaking, in both Figure 6 and
Figure 7, the plots (b) and (d) in the right column have better
converged PSNR and lower RMSE than (a) and (c) in the left
column. For example, as shown in Figure 6, the PSNR values
are over 43 after 50 iterations for the Isabel dataset with 960
bits coding length in (d), while the PSNR values are around
41 with 400 bits coding length in (c). Since the models in
the right column have larger coding lengths and thus more
powerful expressive capability. In general, a PSNR value over
43 indicates a superior reconstruction result [24].

TABLE I: Comparison of performance with image based volume compression method

Data Type PSNR [24] our PSNR compression rate [24] our lowest compression rate
Isabel 35.97 42.6 3.69% 1%
Combustion 33.29 40.9 3.69% 1%

TABLE II: Comparison of performance with distribution based volume compression method

Data Type RMSE [23] our RMSE compression rate [23] our lowest compression rate
Isabel 0.001995 0.0000314 1% 1%
Combustion 0.01 0.0011672 1% 1%

(a) 5×10×10×10 with 2000 bits
coding length

(b) 5×10×10×10 with 4000
bits coding length

(c) 5×5×5×5 with 400 bits cod-
ing length

(d) 5×5×5×5 with 960 bits
coding length

Fig. 7: Combustion: training PSNR and RMSE for each
iteration with different combinations of chuck sizes and coding
lengths.

E. Visualization of Reconstruction

We select several time steps of both datasets, show the re-
construction of both datasets, and compare them with original
datasets. Figure 8 and Figure 9 show the visualization results.
The compression rate for each dataset is approximately 1%.
We can see our reconstructed frames can recover the details
of the original frames and barely have artifacts even with such
a relatively low compression rate.

VI. CONCLUSION

We have proposed a novel deep learning based method to
compress volumetric datasets in real time. The autoencoder
based model we’ve designed take into account both spatial
patterns and temporal dynamics within volume data. Our
experiments show that, compared with the existing methods,
our approach could learn volume data representation at a
lower compression rate while preserving the details of original
dataset. In addition, our method can compression/decompress
volume data in real time or nearly real time. The proposed

(a) Ground Truth (frame 6) (b) Reconstructed (frame 6)

(c) Ground Truth (frame 11) (d) Reconstructed (frame 11)

(e) Ground Truth (frame 16) (f) Reconstructed (frame 16)

(g) Ground Truth (frame 21) (h) Reconstructed (frame 21)

(i) Ground Truth (frame 26) (j) Reconstructed (frame 26)

Fig. 8: Visualization of reconstruction for the Isabel dataset.
The left column is the ground truth for selected frames and
the right column is the reconstructed frames. Here the chunk
dimension of our model is 2×5×5×5 and the coding length
is 120, and thus the compression rate is 1.5%.

model is adaptive to data distribution hence has the capability
to further compress data.

(a) Ground Truth (frame 6) (b) Reconstructed (frame 6)

(c) Ground Truth (frame 11) (d) Reconstructed (frame 11)

(e) Ground Truth (frame 16) (f) Reconstructed (frame 16)

(g) Ground Truth (frame 21) (h) Reconstructed (frame 21)

(i) Ground Truth (frame 26) (j) Reconstructed (frame 26)

Fig. 9: Visualization of reconstruction for the combustion
dataset. The left column is the ground truth for selected frames
and the right column is the reconstructed frames. Here the
chunk dimension of our model is 2×3×9×5 and the coding
length is 120, and thus the compression rate is 1.38%.

VII. ACKNOWLEDGMENT

This research has been sponsored in part by the National
Science Foundation grants ICER-1541043 and IIS-1423487.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: a system for large-
scale machine learning. In OSDI, vol. 16, pp. 265–283, 2016.

[2] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis
and machine intelligence, 35(8):1798–1828, 2013.

[3] Y. Bengio and O. Delalleau. On the expressive power of deep architec-
tures. In International Conference on Algorithmic Learning Theory, pp.
18–36. Springer, 2011.

[4] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal
Processing Magazine, 34(4):18–42, 2017.

[5] M. Burtscher and P. Ratanaworabhan. High throughput compression
of double-precision floating-point data. In 2007 Data Compression
Conference (DCC’07), pp. 293–302. IEEE, 2007.

[6] M. Burtscher and P. Ratanaworabhan. Fpc: A high-speed compressor for
double-precision floating-point data. IEEE Transactions on Computers,
58(1):18–31, 2009.

[7] A. Cichocki. Tensor networks for dimensionality reduction, big data
and deep learning. In Advances in Data Analysis with Computational
Intelligence Methods, pp. 3–49. Springer, 2018.

[8] N. Cohen, O. Sharir, and A. Shashua. On the expressive power of deep
learning: A tensor analysis. In Conference on Learning Theory, pp.
698–728, 2016.

[9] S. Dunne, S. Napel, and B. Rutt. Fast reprojection of volume data.
In [1990] Proceedings of the First Conference on Visualization in
Biomedical Computing, pp. 11–18. IEEE, 1990.

[10] V. Engelson, D. Fritzson, and P. Fritzson. Lossless compression of high-
volume numerical data from simulations. In Proc. Data Compression
Conference, 2000.

[11] N. Fout and K.-L. Ma. An adaptive prediction-based approach to
lossless compression of floating-point volume data. IEEE Transactions
on Visualization and Computer Graphics, 18(12):2295–2304, 2012.

[12] F. Ghido. An efficient algorithm for lossless compression of ieee float
audio. In Data Compression Conference, 2004. Proceedings. DCC 2004,
pp. 429–438. IEEE, 2004.

[13] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. science, 313(5786):504–507, 2006.

[14] M. Isenburg, P. Lindstrom, and J. Snoeyink. Lossless compression of
predicted floating-point geometry. Computer-Aided Design, 37(8):869–
877, 2005.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[16] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[17] S. Liu, J. A. Levine, P.-T. Bremer, and V. Pascucci. Gaussian mixture
model based volume visualization. In IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pp. 73–77. IEEE, 2012.

[18] S. Muraki. Volume data and wavelet transforms. IEEE Computer
Graphics and applications, 13(4):50–56, 1993.

[19] O. Rippel and L. Bourdev. Real-time adaptive image compression. In
Proceedings of the 34th International Conference on Machine Learning-
Volume 70, pp. 2922–2930. JMLR. org, 2017.

[20] M. B. Rodriguez, E. Gobbetti, J. A. I. Guitián, M. Makhinya, F. Marton,
R. Pajarola, and S. K. Suter. A survey of compressed GPU-based direct
volume rendering. In Eurographics (STARs), pp. 117–136, 2013.

[21] R. Sicat, J. Krüger, T. Möller, and M. Hadwiger. Sparse PDF volumes
for consistent multi-resolution volume rendering. IEEE transactions on
visualization and computer graphics, 20(12):2417–2426, 2014.

[22] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol.
Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of machine
learning research, 11(Dec):3371–3408, 2010.

[23] K.-C. Wang, K. Lu, T.-H. Wei, N. Shareef, and H.-W. Shen. Statistical
visualization and analysis of large data using a value-based spatial
distribution. In 2017 IEEE Pacific Visualization Symposium (PacificVis),
pp. 161–170. IEEE, 2017.

[24] K.-C. Wang, N. Shareef, and H.-W. Shen. Image and distribution based
volume rendering for large data sets. In 2018 IEEE Pacific Visualization
Symposium (PacificVis), pp. 26–35. IEEE, 2018.

[25] R. Westermann. A multiresolution framework for volume rendering.
In Ausgezeichnete Informatikdissertationen 1996, pp. 79–94. Springer,
1998.

[26] X. Xie and Q. Qin. Fast lossless compression of seismic floating-
point data. In 2009 International Forum on Information Technology
and Applications, vol. 1, pp. 235–238. IEEE, 2009.

[27] H. Younesy, T. Möller, and H. Carr. Improving the quality of multi-
resolution volume rendering. In Proceedings of the Eighth Joint
Eurographics / IEEE VGTC Conference on Visualization, EUROVIS’06,
pp. 251–258, 2006.

	Introduction
	Related Work
	Temporal-Spatial Domain Compression
	Frequency Domain Compression
	Deep Learning based Data Representation

	Adaptive Autoencoder based Architecture
	Data Preprocessing
	Autoencoder-based Model
	Our Model
	Feature Extraction and Code Generation
	Structure Primitives
	Code Quantization
	Boundary Stitching
	Adaptive Compression

	Learning Loss Functions

	Dataset and Training
	Evaluation
	Reconstruction Quality
	Impact of Chunk Size
	Time Efficiency
	Convergence Analysis
	Visualization of Reconstruction

	Conclusion
	Acknowledgment
	References

